Lect. 19: Switched Capacitor Filters (S&S 12.10)

Large resistors in active RC filters are NOT practical in IC

- Large area
- Accurate control of R very difficult

Circuit technique to solve the problem

➔ Replace resistors with capacitors: Switched capacitor

Assume initially ϕ_2 ON, ϕ_1 OFF and $V_1 > V_2$ $Q = CV_2$ When ϕ_2 is OFF and ϕ_1 is ON Q=CV₁ $\Delta Q = C(V_1 - V_2)$ supplied by V_1 When ϕ_1 is OFF and ϕ_2 is ON $Q=CV_2$ $\Delta Q = C(V_1 - V_2)$ supplied to V_2 \rightarrow Switched capacitors deliver charges from V₁ to V₂ $\Delta Q = C(V_1 - V_2)$ during T_c $\frac{V_1 - V_2}{i_{arr}} = \frac{T_c}{C} = R_{eq}$ $=\frac{C(V_1-V_2)}{T_2}$

W.-Y. Choi

Electronic Circuits 2 (07/1)

(c)

*i*_{av}

 ϕ_1 ϕ_2 $\leftarrow T_c$ (c) Switches are usually realized with MOS switches having finite R, C

In this course, assume ideal switches

If $1/T_c >>$ frequency of interests, SW is acting as a resistor.

Switched Capacitor Amplifier

Initially, assume Q_1 , $Q_2 = 0$

```
When \phi_1 is ON, \phi_2 is OFF

Q_1 = C_1 V_i

Q_2 = C_2 (0 - V_0)

But Q_1 = Q_2

C_1 V_i = -C_2 V_0

\therefore V_0 = -\frac{C_1}{C_1} V_i
```

Inverting Amplifier \rightarrow Gain determined by the ratio of C's

Switched Capacitor Amplifier

During ϕ_1

$$Q_1 = C_1 V_i \qquad Q_2 = 0$$

During ϕ_2 $Q_1 = 0$ $Q_2 = C_2 (V_0 - 0)$

But $Q_1 = Q_2$

$$C_1 V_i = C_2 V_o$$
$$\therefore V_o = \frac{C_1}{C_2} V_i$$

Non-inverting weighted summer

Electronic Circuits 2 (07/1)

Non-inverting weighted summer

Electronic Circuits 2 (07/1)

Electronic Circuits 2 (07/1)

Electronic Circuits 2 (07/1)

Tow-Thomas Biquad

Electronic Circuits 2 (07/1)

Tow-Thomas Biquad

Electronic Circuits 2 (07/1)

Any active RC filter (such as biquad) can be replaced with equivalent SC filter \rightarrow Project #3

SC filters perform discrete time domain signal processing

s-domain analysis for continuous time signal processing

➔ z-domain analysis for discrete time signal processing

However, SC circuits have speed limitations